
Types of Matrices and Diagonalization of Matrices 

 

Symmetric matrix: A square matrix is called symmetric matrix if 𝐴 = 𝐴𝑇 

i.e.𝑎𝑖𝑗 = 𝑎𝑗𝑖 

e.g.[
1 2 3
2 5 6
3 6 7

] 

Skew-Symmetric matrix: A square matrix is called symmetric matrix if 𝐴 = −𝐴𝑇 

i.e.   𝑎𝑖𝑗 = −𝑎𝑗𝑖. The diagonal elements of a skew-symmetric matrix are zero because 𝑎𝑖𝑖 =

−𝑎𝑖𝑖  if and only if 𝑎𝑖𝑖 = 0 

e.g. [
0 −2 3
2 0 6
−3 −6 0

] 

 

 

 Orthogonal matrix: A square  matrix A is said to be orthogonal if  

𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼. 

                                              e.g. 𝐴 =  
1

3
[
1 2 2
2 1 −2
2 −2 1

] 

Unitary matrix:  A square matrix A is said to be Unitary if  

𝐴𝜃𝐴 = 𝐴𝐴𝜃 = 𝐼 

       where  𝐴𝜃 = (𝐴)
𝑇
 

 

               e.g. 𝐴 =  
1

3
[
1 2 2
2 1 −2
2 −2 1

] 

      Note: Every orthogonal matrix is unitary. 

Hermitian matrix:  A square matrix A is said to be Hermitian matrix if  

𝐴𝜃 = 𝐴  i.e.  𝑎𝑖𝑗 = 𝑎𝑗𝑖  

       Diagonal elements of a Hermitian matrix are real numbers. 

                                         e.g.  𝐴 = [
1 2 + 3𝑖 5 − 6𝑖

2 − 3𝑖 2 9 − 6𝑖
5 + 6𝑖 9 + 6𝑖 −11

] 



 

Skew Hermitian matrix:  A square matrix A is said to be skew Hermitian matrix if  

𝐴𝜃 = −𝐴  i.e.  𝑎𝑖𝑗 = −𝑎𝑗𝑖 

       Diagonal elements of a skew Hermitian matrix are either zero or purely imaginary 

numbers. 

   e.g.  𝐴 =  [
1 2 + 3𝑖 −5 − 6𝑖

−2 + 3𝑖 2 −9 + 6𝑖
5 − 6𝑖 9 + 6𝑖 −11

] 

Similar matrices: A square matrix A is said to be similar to a square matrix B if there exists 

an invertible matrix P   such that    𝐴 = 𝑃−1𝐵𝑃.  P is called similarity matrix.  This relation of 

similarity is a symmetric relation. 

Cayley Hamilton theorem: Every square matrix satisfies its own characteristic equation. 

Eigen values and Eigen Vectors: Let A be a square matrix. Then the equation determinant 

(𝐴 − 𝛼𝐼) =0 is called characteristic equation of A.  The roots of characteristic equation of A 

are called Eigen values or latent roots of matrix A. 

A column vector X satisfying the equation  𝐴𝑋 = 𝛼𝑋  i.e. (𝐴 − 𝛼𝐼)𝑋 = 0 is called Eigen 

vector or latent vector of matrix A corresponding to eigen value 𝛼. 

Diagonalizable matrix: A square matrix A is said to be diagonalizable if there exists an 

invertible matrix P such that  

𝑃−1𝐵𝑃 = 𝐷 

 Where D is a diagonal matrix and the diagonal elements of D are Eigen values of A. 

1. The characteristics equation of a matrix A is t2−t−1=0, then determine A-1. 

Sol. By Cayley Hamilton theorem, every square matrix satisfies its characteristic equation. 

       Therefore A2-A-1=0 

                   or  A2-A=1 

       Premultipying both sides by A 

                       A-I=A-1 

2. Prove  eigen value of a Hermitian matrix is real. 

 

      Sol. Let A be a Hermitian matrix.  Therefore 𝐴𝜃 = 𝐴 − −− − − −(1) 

              Let 𝛼 be eigen value of A and X be the corresponding non-zero eigen vector. Then 

  𝐴𝑋 = 𝛼𝑋
𝑦𝑖𝑒𝑙𝑑𝑠
→   (𝐴𝑋)𝜃 = (𝛼𝑋)𝜃

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑋𝜃𝐴𝜃 = 𝛼̅𝑋𝜃

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑋𝜃𝐴 = 𝛼̅𝑋𝜃   (using (1)) 

  Post multiplying both sides by X, we get 



  𝑋𝜃(𝐴𝑋) = 𝛼̅(𝑋𝜃𝑋)
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑋𝜃 𝛼𝑋 = 𝛼̅(𝑋𝜃𝑋)

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼(𝑋𝜃𝑋) = 𝛼̅(𝑋𝜃𝑋)

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼 = 𝛼̅ 

            Hence 𝛼 is a real number. Therefore Eigen value of a Hermitian matrix is real. 

3. Prove 
|𝐴|

𝛼
 is an eigen value of 𝑎𝑑𝑗 (𝐴)eigen vector remaining the same if 𝛼 is an eigen value of A and X 

is corresponding Eigen vector. 

     Sol. Let A be a square matrix− − −− − − (1) 

              Let 𝛼 be eigen value of A and X be the corresponding non-zero eigen vector. Then 

  𝐴𝑋 = 𝛼𝑋   (using (1)) 

  Pre- multiplying both sides by adj (A), we get 

  𝑎𝑑𝑗 (𝐴)(𝐴𝑋) = 𝑎𝑑𝑗 (𝐴)𝛼𝑋
𝑦𝑖𝑒𝑙𝑑𝑠
→   (𝑎𝑑𝑗 (𝐴)𝐴)𝑋 = 𝛼(𝑎𝑑𝑗 (𝐴)𝑋)

𝑦𝑖𝑒𝑙𝑑𝑠
→   |𝐴|𝑋 = 𝛼(𝑎𝑑𝑗 (𝐴)𝑋) 

𝑎𝑑𝑗 (𝐴)𝑋 =
|𝐴|

𝛼
𝑋 

              Hence 
|𝐴|

𝛼
 is an eigen value of 𝑎𝑑𝑗 (𝐴)  and X is corresponding Eigen vector.  

 

4. Prove that product of two orthogonal matrices is orthogonal matrix 

Sol. Let A and B be two orthogonal matrices. Therefore  

 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 and 𝐵𝐵𝑇 = 𝐵𝑇𝐵 = 𝐼 

 Now   (𝐴𝐵)(𝐴𝐵)𝑇 = 𝐴𝐵𝐵𝑇𝐴𝑇 = 𝐴𝐼𝐴𝑇 = 𝐴𝐴𝑇 = 𝐼     and 

(𝐴𝐵)𝑇(𝐴𝐵) = 𝐵𝑇𝐴𝑇 𝐴𝐵 = 𝐵𝐼𝐵𝑇 = 𝐵𝐵𝑇 = 𝐼 

       Hence AB is an orthogonal matrix. Therefore product of two orthogonal matrices is orthogonal  

       matrix. 

5. Prove that transpose of an orthogonal matrix is orthogonal matrix. 

Sol. Let A be orthogonal matrix. Therefore  

 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 

      Now   𝐴𝑇(𝐴𝑇)𝑇 = 𝐴𝑇𝐴 = 𝐼               and 

(𝐴𝑇)𝑇𝐴𝑇=A𝐴𝑇 = 𝐼 

 Hence 𝐴𝑇 is an orthogonal matrix 

Therefore transpose of an orthogonal matrix is orthogonal matrix. 

6. Prove that inverse of an orthogonal matrix is an orthogonal matrix. 

Sol.  Let A be orthogonal matrix. Therefore  

 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 

      Now   𝐴−1(𝐴−1)𝑇 = 𝐴−1(𝐴𝑇)−1 = (𝐴𝑇𝐴)−1 = 𝐼−1 = 𝐼               and 

(𝐴−1)𝑇𝐴−1=(𝐴𝑇)−1𝐴−1 = (𝐴𝐴𝑇)−1 = 𝐼−1 = 𝐼 



 Hence 𝐴−1 is an orthogonal matrix 

Therefore inverse of an orthogonal matrix is orthogonal matrix. 

7. Prove that determinant of an orthogonal matrix is ±1. 

Sol. Let A be orthogonal matrix. Therefore  

 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 

 Taking determinant on both sides 

 |𝐴𝐴𝑇| = |𝐼|
𝑦𝑖𝑒𝑙𝑑𝑠
→   |𝐴||𝐴𝑇| = 1

𝑦𝑖𝑒𝑙𝑑𝑠
→   |𝐴||𝐴| = 1

𝑦𝑖𝑒𝑙𝑑𝑠
→   |𝐴|2 = 1

𝑦𝑖𝑒𝑙𝑑𝑠
→   |𝐴| = ±1 

 (Because  |𝐶𝐷| = |𝐶||𝐷|,    |𝐼| = 1,    |𝐴| = |𝐴𝑇| ) 

8. Prove that inverse of a unitary matrix is an unitary matrix. 

Sol.  Let A be unitary matrix. Therefore  

 𝐴𝜃𝐴 = 𝐴𝐴𝜃 = 𝐼  where   𝐴𝜃 = (𝐴)
𝑇
 

      Now   𝐴−1(𝐴−1)𝜃 = 𝐴−1(𝐴𝜃)
−1
= (𝐴𝜃𝐴)

−1
= 𝐼−1 = 𝐼               and 

(𝐴−1)𝜃𝐴−1=(𝐴𝜃)
−1
𝐴−1 = (𝐴𝐴𝜃)

−1
= 𝐼−1 = 𝐼 

 Hence 𝐴−1 is an orthogonal matrix 

Therefore inverse of an orthogonal matrix is orthogonal matrix. 

9. State and prove Cayley Hamilton theorem. 

Sol. Statement: Every square matrix satisfies its own characteristic equation. 

       Proof:  Let A be a square matrix of order n and its characteristic equation be |𝐴 − 𝜆𝐼| = 0 

      i.e.  (−1)𝑛𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 +⋯……+ 𝑎𝑛 = 0 

      Required to be proved:   (−1)𝑛𝐴𝑛 + 𝑎1𝐴
𝑛−1 + 𝑎2𝐴

𝑛−2 +⋯……+ 𝑎𝑛𝐼 = 0 

      Here  𝜆 is an eigen value of A.  

      [𝐴 − 𝜆𝐼] is a matrix of order n 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑎𝑑𝑗. (𝐴 − 𝜆𝐼) is a matrix of order (n-1).  

     Therefore we can write   𝑎𝑑𝑗. (𝐴 − 𝜆𝐼) = 𝑃1𝜆
𝑛−1 + 𝑃2𝜆

𝑛−2 +⋯……+ 𝑃𝑛  where                

     𝑃1, 𝑃2, ……… 𝑃𝑛  are square matrices.  

    Also  𝐴(𝑎𝑑𝑗. 𝐴) = |𝐴|𝐼  
𝑦𝑖𝑒𝑙𝑑𝑠
→     (𝐴 − 𝜆𝐼)𝑎𝑑𝑗. (𝐴 − 𝜆𝐼) = |𝐴 − 𝜆𝐼|𝐼 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    (𝐴 − 𝜆𝐼)[𝑃1𝜆

𝑛−1 + 𝑃2𝜆
𝑛−2 +⋯……+ 𝑃𝑛]= [(−1)

𝑛𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 +⋯……+ 𝑎𝑛]𝐼 

               Comparing coefficients of like powers of A, we get 

                        −𝑃1 = (−1)
𝑛𝐼 

                𝐴𝑃1 − 𝑃2 = 𝑎1𝐼 

               𝐴𝑃2 − 𝑃3 = 𝑎2𝐼 

              𝐴𝑃3 − 𝑃4 = 𝑎3𝐼 

     …………………….  (and so on) 

         𝐴𝑃𝑛−1 − 𝑃𝑛 = 𝑎𝑛−1𝐼 

             𝐴𝑃𝑛 = 𝑎𝑛𝐼 



   Pre-multiplying these equations by   𝐴𝑛, 𝐴𝑛−1, 𝐴𝑛−2, ……… , 𝐴, 𝐼  respectively on both sides and  

  adding, we get     0 = (−1)𝑛𝐴𝑛 + 𝑎1𝐴
𝑛−1 + 𝑎2𝐴

𝑛−2 +⋯……+ 𝑎𝑛𝐼 

   
𝑦𝑖𝑒𝑙𝑑𝑠
→   (−1)𝑛𝐴𝑛 + 𝑎1𝐴

𝑛−1 + 𝑎2𝐴
𝑛−2 +⋯……+ 𝑎𝑛𝐼 = 0 

  (Hence proved). 

     

10. Find characteristic equation of  𝐴 = [
1 0 −1
1 2 1
2 2 3

] 

        Sol. 𝐴 = [
1 0 −1
1 2 1
2 2 3

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

1 − 𝛼 0 −1
1 2 − 𝛼 1
2 2 3 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼3 − 6𝛼2 + 11𝛼 − 6 = 0 

11. Is 𝐴 = [
1 0 0
0 3 −1
0 −1 3

] diagonalizable? 

      Sol. 𝐴 = [
1 0 0
0 3 −1
0 −1 3

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

1 − 𝛼 0 0
0 3 − 𝛼 −1
0 −1 3 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼3 − 7𝛼2 + 14𝛼 − 8 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼 = 1,2,4  

            Since A has three distinct Eigen values, ∴ it has three linearly independent Eigen vectors. Hence A   

            A is diagonalizable. 

12. Verify Cayley Hamilton theorem for 𝐴 = [
1 4
3 2

]. Hence find 𝐴−1. Also find Eigen values and vectors 

of  A 

     Sol. 𝐴 = [
1 4
3 2

] 

Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

1 − 𝛼 4
3 2 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼2 − 3𝛼 − 10 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼 = −2,5 

  By Cayley Hamilton theorem  𝐴2 − 3𝐴 − 10𝐼 = 0  ………………………(*) 

  Now 𝐴2 = [
1 4
3 2

] [
1 4
3 2

] = [
13 12
9 16

]   ,    

∴ 𝐴2 − 3𝐴 − 10𝐼 = [
13 12
9 16

] + [
−3 −12
−9 −6

] + [
−10 0
0 −10

] = [
0 0
0 0

] 

∴ Cayley Hamilton theorem is verified for given matrix A. 



  Multiplying both sides of (*) by 𝐴−1, we get  𝐴 − 3𝐼 = 10𝐴−1
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝐴−1 =

1

10
[
−2 4
3 −1

] 

     Let 𝑋1 = [
𝑥
𝑦]be the Eigen vector of A corresponding to Eigen value 𝛼 = −2. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (−2)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

3 4
3 4

] [
𝑥
𝑦] = [

0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   3𝑥 + 4𝑦 = 0 , 3𝑥 + 4𝑦 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

−4
=
𝑦

3
 

 ∴  𝑋1 = [
−4
3
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = −2. 

     Let 𝑋2 = [
𝑥
𝑦]be the Eigen vector of A corresponding to Eigen value 𝛼 = 5. 

∴  [𝐴 − 𝛼𝐼]𝑋2 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (5)𝐼]𝑋2 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

−4 4
3 −3

] [
𝑥
𝑦] = [

0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   −4𝑥 + 4𝑦 = 0 , 3𝑥 − 3𝑦 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑥 = 𝑦 

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=
𝑦

1
 

 ∴  𝑋2 = [
1
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 5. 

13. Verify Cayley Hamilton theorem for 𝐴 = [
2 −1 1
−1 2 −1
1 −1 2

]. Hence find 𝐴−1. 

     Sol.  𝐴 = [
2 −1 1
−1 2 −1
1 −1 2

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

2 − 𝛼 −1 1
−1 2 − 𝛼 −1
1 −1 2 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼3 − 6𝛼2 + 9𝛼 − 4 = 0 

             By Cayley Hamilton theorem 𝐴3 − 6𝐴2 + 9𝐴 − 4𝐼 = 0     …………………..(i) 

            L.H.S.𝐴2 = 𝐴. 𝐴 = [
2 −1 1
−1 2 −1
1 −1 2

] [
2 −1 1
−1 2 −1
1 −1 2

] = [
6 −5 5
−5 6 −5
5 −5 6

] 

𝐴3 = 𝐴𝐴𝐴 = [
6 −5 5
−5 6 −5
5 −5 6

] [
2 −1 1
−1 2 −1
1 −1 2

] = [
22 −21 21
−21 22 −21
21 −21 22

] 

        Hence 𝐴3 − 6𝐴2 + 9𝐴 − 4𝐼 

= [
22 −21 21
−21 22 −21
21 −21 22

] − 6 [
6 −5 5
−5 6 −5
5 −5 6

] + 9 [
2 −1 1
−1 2 −1
1 −1 2

] − 4 [
1 0 0
0 1 0
0 0 1

] 

= [
22 − 36 + 18 − 4 −21 + 30 − 9 21 − 30 + 9
−21 + 30 − 9 22 − 36 + 18 − 4 −21 + 30 − 9
21 − 30 + 9 −21 + 30 − 9 22 − 36 + 18 − 4

] = [
0 0 0
0 0 0
0 0 0

] 

     Hence Cayley Hamilton theorem is verified for the given matrix A 

 From(i), 4𝐼 = 𝐴3 − 6𝐴2 + 9𝐴 

             Multiplying both sides by 𝐴−1, we get 



𝐴−1 =
1

4
[𝐴2 − 6𝐴 + 9𝐼] =

1

4
[[
6 −5 5
−5 6 −5
5 −5 6

] − 6 [
2 −1 1
−1 2 −1
1 −1 2

] + [
9 0 0
0 9 0
0 0 9

]] 

=
1

4
[
3 1 −1
1 3 1
−1 1 3

] 

14. Find Eigen values and vectors of 𝐴 = [
3 1 −1
−2 1 2
0 1 2

] 

      Sol. 𝐴 = [
3 1 −1
−2 1 2
0 1 2

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

3 − 𝛼 1 −1
−2 1 − 𝛼 2
0 1 2 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼3 − 6𝛼2 + 11𝛼 − 6 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = 1,2,3 are Eigen values of given matrix. 

 Let 𝑋1 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (1)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

2 1 −1
−2 0 2
0 1 1

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    2𝑥 + 𝑦 − 𝑧 = 0 , −2𝑥 + 2𝑧 = 0, 𝑦 + 𝑧 = 0 

              From first two equations,   
𝑥

1 −1
0 2

=
𝑦

−1 2
2 −2

=
𝑧

2 1
−2 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

2
=

𝑦

−2
=
𝑧

2

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=

𝑦

−1
=
𝑧

1
 

 ∴  𝑋1 = [
1
−1
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 

 Let 𝑋2 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 2. 

∴  [𝐴 − 𝛼𝐼]𝑋2 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (2)𝐼]𝑋2 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

1 1 −1
−2 −1 2
0 1 0

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 + 𝑦 − 𝑧 = 0 , −2𝑥 − 𝑦 + 2𝑧 = 0, 𝑦 = 0 

              From first two equations,   
𝑥

1 −1
−1 2

=
𝑦

−1 1
2 −2

=
𝑧

1 1
−2 −1

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=
𝑦

0
=
𝑧

1
 

 ∴  𝑋2 = [
1
0
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 2. 

 Let 𝑋3 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 3. 

∴  [𝐴 − 𝛼𝐼]𝑋3 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (3)𝐼]𝑋3 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

0 1 −1
−2 −2 2
0 1 −1

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦 − 𝑧 = 0 , −2𝑥 − 2𝑦 + 2𝑧 = 0, 𝑦 − 𝑧 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦 − 𝑧 = 0 , −2𝑥 − 2𝑦 + 2𝑧 = 0 



            ∴ we get  ,   
𝑥

1 −1
−2 2

=
𝑦

−1 0
2 −2

=
𝑧

0 1
−2 −2

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

0
=
𝑦

2
=
𝑧

2

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

0
=
𝑦

1
=
𝑧

1
 

 ∴  𝑋3 = [
0
1
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 2. 

15. Find Eigen values and vectors of 𝐴 = [
1 1 0
0 1 1
0 0 1

] 

      Sol. 𝐴 = [
1 1 0
0 1 1
0 0 1

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

1 − 𝛼 1 0
0 1 − 𝛼 1
0 0 1 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   (1 − 𝛼)3

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = 1,1,1 are Eigen values of given matrix. 

 Let 𝑋1 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (1)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

0 1 0
0 0 1
0 0 0

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦 = 0 , 𝑧 = 0.  𝑇𝑎𝑘𝑒 𝑥 = 1 

 ∴  𝑋1 = [
1
0
0
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 

16.  Examine whether the following matrix is diagonalizable. If so, obtain the matrix P such that 𝑃−1𝐴𝑃 is 

a diagonal matrix.𝐴 = [
−2 2 −3
2 1 −6
−1 −2 0

] 

      Sol. 𝐴 = [
−2 2 −3
2 1 −6
−1 −2 0

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

−2 − 𝛼 2 −3
2 1 − 𝛼 −6
−1 −2 0 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   −(𝛼 + 3)(𝛼 + 3)(𝛼 − 5) = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = −3,−3, 5 are Eigen values of given matrix. 

 Let 𝑋1 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = −3. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (−3)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

1 2 −3
2 4 −6
−1 −2 3

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

   (Operating 𝑅2 → 𝑅2 − 2𝑅1, 𝑅3 → 𝑅3 + 𝑅1) 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   [

1 2 −3
0 0 0
0 0 0

] [
𝑥
𝑦
𝑧
] = [

0
0
0
]
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 + 2𝑦 − 3𝑧 = 0  

   Choose  𝑦 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 − 3𝑧 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

3
=
𝑧

1
 



 ∴  𝑋1 = [
3
0
1
]  is the first Eigen vector of A corresponding to Eigen value 𝛼 = −3. 

      Choose  𝑧 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 + 2𝑦 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

−2
=
𝑦

1
 

 ∴  𝑋2 = [
−2
1
0
]  is another Eigen vector of A corresponding to Eigen value 𝛼 = −3. 

 Let 𝑋3 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 5. 

∴  [𝐴 − 𝛼𝐼]𝑋3 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (5)𝐼]𝑋3 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

−7 2 −3
2 −4 −6
−1 −2 −5

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   −7𝑥 + 2 𝑦 − 3𝑧 = 0 , 2𝑥 − 4𝑦 − 6𝑧 = 0,−𝑥 − 2𝑦 − 5𝑧 = 0 

∴  from first two equations we get  ,   
𝑥

2 −3
−4 −6

=
𝑦

−3 −7
−6 2

=
𝑧

−7 2
2 −4

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

−24
=

𝑦

−48
=

𝑧

24

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=

𝑦

12
=

𝑧

−1
 

 ∴  𝑋3 = [
1
2
−1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 5. 

∴ Modal Matrix P = [
−2 3 1
1 0 2
0 1 −1

] 

|𝑃| = |
−2 3 1
1 0 2
0 1 −1

| = 8 ≠ 0. Hence vectors are linearly independent and the given matrix is     

 Diagonalizable. 

𝑃−1 =
𝐴𝑑𝑗. 𝑃

|𝑃|
=
1

8
[
−2 4 6
1 2 5
1 2 −3

] 

 Diagonal Matrix = D = 𝑃−1𝐴𝑃 =
1

8
[
−2 4 6
1 2 5
1 2 −3

] [
−2 2 −3
2 1 −6
−1 −2 0

] [
−2 3 1
1 0 2
0 1 −1

] 

=
1

8
[
−24 0 0
0 −24 0
0 0 40

] [
−2 3 1
1 0 2
0 1 −1

] = [
−3 0 0
0 −3 0
0 0 5

] 

17. Let T be a linear transformation defined by    𝑇 [(
1 1
1 1

)] = (
1
2
3
)  ,    𝑇 [(

0 1
1 1

)] =

(
1
−2
3
)  ,     𝑇 [(

0 0
1 1

)] = (
1
−2
−3
)   ,     𝑇 [(

0 0
0 1

)] = (
−1
2
3
). Find  𝑇 [(

4 5
3 8

)]. 

Sol.The matrices (
1 1
1 1

) , (
0 1
1 1

),   (
0 0
1 1

),   (
0 0
0 1

)   are linearly independent and hence form a 

basis in the space of 2 × 2  matrices. We write for any scalars 𝛼1, 𝛼2, 𝛼3, 𝛼4,   not all zero 

(
4 5
3 8

) = 𝛼1 (
0 1
1 1

) + 𝛼2 (
0 1
1 1

) + 𝛼3 (
0 0
1 1

) + 𝛼4 (
0 0
0 1

) = [
𝛼1 𝛼1 + 𝛼2

𝛼1 + 𝛼2 + 𝛼3 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4
] 

                         Comparing the elements and solving the resulting system of equations, we get 

              𝛼1 = 4, 𝛼2 =     1, 𝛼3 = −2, 𝛼4 = 5 . Since T is a linear transformation,  



∴ 𝑇 [(
4 5
3 8

)] = 𝛼1𝑇 [(
1 1
1 1

)] + 𝛼2 𝑇 [(
0 1
1 1

)] + 𝛼3  𝑇 [(
0 0
1 1

)] + 𝛼4   𝑇 [(
0 0
0 1

)]

= 4(
1
2
3
) + 1(

1
−2
3
) − 2(

1
−2
−3
) + 5(

−1
2
3
) = (

−2
20
36
) 

 


