Types of Matrices and Diagonalization of Matrices

Symmetric matrix: A square matrix is called symmetric matrix if A = AT

i.e.aij = aji
1 2 3
egl2 5 6
3 6 7
Skew-Symmetric matrix: A square matrix is called symmetric matrix if A = —AT
i.e. a;; = —a;. The diagonal elements of a skew-symmetric matrix are zero because a;; =

—a;; ifandonlyifa; =0

0 -2 3
eg. | 2 0 6

-3 =6 0

Orthogonal matrix: A square matrix A is said to be orthogonal if

AAT = ATA = 1.
oz 2
egA=l2 1 -2
2 -2 1

Unitary matrix: A square matrix A is said to be Unitary if
APA = AA% =1

where 4° = (4)"

3
2 =2 1

1 2 2
eg A= 1[2 1 —2]
Note: Every orthogonal matrix is unitary.
Hermitian matrix: A square matrix A is said to be Hermitian matrix if
A =Aie a;=1a;
Diagonal elements of a Hermitian matrix are real numbers.

1 2+3i 5-—61
eg. A= |(2—-3i 2 9 — 6i
54+46i 94+46i -11



Skew Hermitian matrix: A square matrix A is said to be skew Hermitian matrix if

A9 =—4 i.e. al‘j = —@

Diagonal elements of a skew Hermitian matrix are either zero or purely imaginary
numbers.

1 2+3i —-5-6i
eg. A= |-2+3i 2 -9+ 60
5—6i 9+6i —-11

Similar matrices: A square matrix A is said to be similar to a square matrix B if there exists
an invertible matrix P such that A = P"'BP. Pis called similarity matrix. This relation of
similarity is a symmetric relation.

Cayley Hamilton theorem: Every square matrix satisfies its own characteristic equation.

Eigen values and Eigen Vectors: Let A be a square matrix. Then the equation determinant
(A — al) =0 is called characteristic equation of A. The roots of characteristic equation of A
are called Eigen values or latent roots of matrix A.

A column vector X satisfying the equation AX = aX i.e. (A — al)X = 0 is called Eigen
vector or latent vector of matrix A corresponding to eigen value a.

Diagonalizable matrix: A square matrix A is said to be diagonalizable if there exists an
invertible matrix P such that

P7BP =D
Where D is a diagonal matrix and the diagonal elements of D are Eigen values of A.

1. The characteristics equation of a matrix A is t>~t—1=0, then determine A™.
Sol. By Cayley Hamilton theorem, every square matrix satisfies its characteristic equation.
Therefore A2-A-1=0
or A%-A=1
Premultipying both sides by A
A-1=A1

2. Prove eigen value of a Hermitian matrix is real.

Sol. Let A be a Hermitian matrix. Therefore 4 =4 — — — — — — €Y

Let a be eigen value of A and X be the corresponding non-zero eigen vector. Then

ield ield ield
AX = aX 225 (4x)° = (ax)? 225 X040 = ax® 255 x04 = ax® (using (1))

Post multiplying both sides by X, we get



X0(AX) = a(Xx%X) Y X0 ax = a(xox) i a(Xx9X) = a(xx) e a=a

Hence «a is a real number. Therefore Eigen value of a Hermitian matrix is real.

3. Prove 2 isan eigen value of adj (4)eigen vector remaining the same if a is an eigen value of A and X

a

is corresponding Eigen vector.
Sol. Let A be a square matrix— — — — — — (D
Let a be eigen value of A and X be the corresponding non-zero eigen vector. Then
AX = aX (using (1))

Pre- multiplying both sides by adj (A), we get

adj (A)(AX) = adj (A)aX 225 (adj (A)A)X = aladj (A)X) 225 41X = a(ad) (A)X)

. |A]
adj (A)X = 7X

Hence 4! is an eigen value of adj (4) and X is corresponding Eigen vector.

a

4. Prove that product of two orthogonal matrices is orthogonal matrix
Sol. Let A and B be two orthogonal matrices. Therefore

AAT =ATA=Tand BBT =BTB =1

Now (AB)(AB)T = ABBTAT = AIAT = AAT =1 and
(AB)T(AB) =BTAT AB = BIBT =BBT =1

Hence AB is an orthogonal matrix. Therefore product of two orthogonal matrices is orthogonal

matrix.
5. Prove that transpose of an orthogonal matrix is orthogonal matrix.
Sol. Let A be orthogonal matrix. Therefore

AAT = ATA =1

Now AT(ANT =ATA=1 and
(ANTAT=AAT =]

Hence AT is an orthogonal matrix
Therefore transpose of an orthogonal matrix is orthogonal matrix.
6. Prove that inverse of an orthogonal matrix is an orthogonal matrix.
Sol. Let A be orthogonal matrix. Therefore

AAT = ATA =1

Now A 1A DT =41(A) 1 =UATD 1 =I1=] and

(A—l)TA—I:(AT)—lA—l — (AAT)—I — [—1 =]



Hence A1 is an orthogonal matrix
Therefore inverse of an orthogonal matrix is orthogonal matrix.
7. Prove that determinant of an orthogonal matrix is +1.
Sol. Let A be orthogonal matrix. Therefore

AAT = ATA =1

Taking determinant on both sides

yields
1— |A| = +1

ield ield ield
|AAT| = 1| == |A]|AT] = 17 |Al]A] = 17— |A]?
(Because |CD| = [CIID], |Il=1, |Al=1A"])
8. Prove that inverse of a unitary matrix is an unitary matrix.

Sol. Let A be unitary matrix. Therefore

A°A = AA° = [ where A9 = (4)

Now A~1(A™1)f = A1(A%) " = (A%4) =11 =1 and
(A4 1=(4%) A = (448) =1t =1

Hence A1 is an orthogonal matrix

Therefore inverse of an orthogonal matrix is orthogonal matrix.

9. State and prove Cayley Hamilton theorem.
Sol. Statement: Every square matrix satisfies its own characteristic equation.
Proof: Let A be a square matrix of order n and its characteristic equation be |A — AI| = 0
e, (D" + g A 4 @At e +a, =
Required to be proved: (—1)"A" + ¢ A"t + @, A" 2 + -t ayl =
Here A is an eigen value of A.
[A — AI is a matrix of order n % adj. (A — AI) is a matrix of order (n-1).
Therefore we can write  adj. (A — AI) = PLA™ 1 + P A2 + - L + B, where

PPy . P, are square matrices.

ield
Also A(adj. A) = |All 225 (4 — ADadj. (A —AI) = |A — Al

yields n-1 n—-2 nqn n-1 n-2
— (A= AD[PA  + PA 2 e L +B]=[(-D""" + a A"+ a2 4 +a,ll

Comparing coefficients of like powers of A, we get

—-P, = (D"
AP, — P, = a41
AP, — P; = a,l
AP; — P, = a3l
......................... (and so on)



Pre-multiplying these equations by A", A™"1, A"2

adding, we get 0= (—1)"A" + q; A" + q, A" % + .-

...... + ayl
yields
— (—1D)"A" + @ A+ @ AT e +a,l =0
(Hence proved).
1 0 -1
10. Find characteristic equationof A=11 2 1
2 2 3
1 0 -1
Sol. A = 2 1
2 2 3
yields 1-a 0 -1
Characteristic equationof Ais |[A—al| =0—| 1 2—«a 1 |=0
2 2 3—a
yields
—a®—6a’+1la—-6=0
1 0 0
11. IsA=|0 3 -1/ diagonalizable?
0 -1 3
1 0 0
Sol. A = 3 -1
0 -1 3
. . ) yieas [L —a 0 0
Characteristic equationof Ais |[A—al| =0——| 0 3—a -—-11]|=0
0 -1 3-a

yields yields
—a®—7a’°+14a-8=0—a =124

Since A has three distinct Eigen values, .- it has three linearly independent Eigen vectors. Hence A

A is diagonalizable.

12. Verify Cayley Hamilton theorem for A = [é ‘2}] Hence find A1, Also find Eigen values and vectors
of A

Sol. A = [3 )

yields —
Characteristic equation of Ais |[A —al| =0 — : l1-a 4

3 2-al”?
ld.
T @ —3a—10 =025 ¢ = —2,5
By Cayley Hamilton theorem A2 —34— 101 =0 ..............ccoeeeneen. *
. 1 4 13 12
Now A [ ][3 ) 16l
L i B s P S B

-~ Cayley Hamilton theorem is verified for given matrix A.



eld —
Multiplying both sides of (*) by A™!, we get A — 31 = 104! 12 At = %[ 32 _41]
LetX; = [;C,]be the Eigen vector of A corresponding to Eigen value a« = —2.

- [A—allx, = 05 u - (-2, = walds[ 4] [;] = [8]

yields yields
—3x+4y=0,3x+4y=0—>—=

-4

w

s X = [_34] is the Eigen vector of A corresponding to Eigen value a« = —2.

X
Let X, = [y]be the Eigen vector of A corresponding to Eigen value @ = 5.

a—anx, =02 - ©nx =0 S [ A40]=19

ylelds yields yields
—— —4x+4y=10,3x—3y =0 =3

x:y ;:

“ X, = [1] is the Eigen vector of A corresponding to Eigen value a = 5.

2 -1 1
13. Verify Cayley Hamilton theoremfor A=|—-1 2 —1[. Hence find A71.
1 -1 2
2 -1 1
Sol. A=|-1 2 -1
1 -1 2
yields 2- a -1 1
Characteristic equationof Ais|[A—al| =0—| -1 2—a -1 |=0
1 -1 2—a
yields
—a®—6a?+9a—-4=0
By Cayley Hamilton theorem 43 — 642 + 94 —41 =0 ....................... @)

2 -1 1 1 6
LHSA?=4.A=|-1 2 —1] —1] [ 5 6 l
1 -1 2 2 5
A3 = AAA =

1 —21 21
6 —SH —1] [ —21]
2 21 22

Hence 43 — 64% + 94 — 41

22 —21 2 -1 17 1 00
=[—21 —21] [ +9]|- 2 -1 —4[0 1 Ol
21 =21 1 -1 21 0 0 1
22—-36+18—-4 —-21+30-9 21-30+9 ] 0 0 0
=] —-21+30-9 22—-36+18—-4 —-21+30-9 =[0 0 Ol
21-30+9 —-21+30-9 22 —36+ 18 — 4] 0 0 O

Hence Cayley Hamilton theorem is verified for the given matrix A
From(i), 41 = A® — 6A4% + 94

Multiplying both sides by A™1, we get



1 1/ -5 5 2 -1 1 9 0 0
A_1=Z[A2_6A+9[]=Z -5 6 —=5|—-6(-1 2 -—-1]/+]0 9 0
5 -5 6 1 -1 2 0 0 9
3 1 -1
=-={1 3 1
-1 1 3
3 1 -1
14. Find Eigen values and vectorsof A= |-2 1 2
0 1 2
3 1 -1
SoL,A=|-2 1 2
0 1 2
. . ) yies |3 - 1 -1
Characteristic equationof Ais |[A—al| =0—| -2 1—a«a 2 |=0
0 1 2—a

yields yields . ) .
— a®—6a?+ 1la — 6 = 0— a = 1,2,3 are Eigen values of given matrix.

L

X
LetX, = [y]be the Eigen vector of A corresponding to Eigen value ¢ = 1.
Z

yields yields 2 T -1
c[A—allX, =0— [A- (DX, =0— -2 0 2 ||y
0 1 11tz

yields
— 2x+y—2z=0,-2x+2z=0,y+2z=0

) ) yields yields
From first two equations, —— = =25 = 51 =X I i X2
2 -2 2 1 -1 1
0 2 2 =2 -2 0
1
~ X; =|—1] isthe Eigen vector of A corresponding to Eigen value a = 1.
1

X
LetX, = [y] be the Eigen vector of A corresponding to Eigen value a = 2.
Z

yields yields 1 1 -1 * 0
cA-allX,=0—[A-IX, =0— -2 -1 2 [|y|=|o0
0 1 01tz 0

yields
—> x+y—z=0,-2x—-y+2z=0,y=0

. . yields
From first two equations, ———5 = =12+ = f: % = %
-1 2 2 =2 -2 -1
1
~ X, = |0]| isthe Eigen vector of A corresponding to Eigen value a = 2.
1

X
Let X5 = [y]be the Eigen vector of A corresponding to Eigen value a = 3.
Z

yields yields 0 1 =1 0
c[A—allX;=0— [A— (3)]X; =0 -2 =2 2|ly|=|o
0 1 —-1itz 0

yields yields
— y—2z=0,-2x-2y+2z2=0y-2z=0—>y—-2z=0,-2x—-2y+2z=0



x z  yields 4 z yields
. we get | =L = 4

y z
1 —1- =T 0 0 1 02T T I
-2 2 2 =2 -2 =2
0
~ X; =|1]| is the Eigen vector of A corresponding to Eigen value a = 2.
1
1 1 0
15. Find Eigen values and vectorsof A=(0 1 1
0 0 1
1 1 0
Sol. A 1 1
0 0 1
yields 1-a 1 0
Characteristic equationof Ais |[A—al| =0——| 0 l1—«a 1 |=0
0 0 1—«a

yields yields

— (1 — a)®— a = 1,1,1 are Eigen values of given matrix.

X
Let X, = [y
A

be the Eigen vector of A corresponding to Eigen value a = 1.

01 0 x 0
lds
. [A—aI]Xl—08—5>[A—(1)1]X1—03L[0 0 1] y]:[o]
000

yields
— y=0,z=0. Takex =1

1
s X = 0] is the Eigen vector of A corresponding to Eigen value a = 1.
0

16. Examine whether the following matrix is diagonalizable. If so, obtain the matrix P such that P~1AP is

-2 2 -3
adiagonal matrixA=|2 1 -6
-1 -2 0
-2 2 =3
Sol.A=1]2 1 -6
-1 -2 0
yields —2-a 2 =3
Characteristic equation of Ais |[A — al| = 0 — 2 l1—-a -6 (=0
-1 -2 0—a

yields yields

— —(a+3)(a+3)(a—5) =0— a=-3,-3,5 are Eigen values of given matrix.

LetX; = [y]be the Eigen vector of A corresponding to Eigen value « = —3.
Z

yields

1 2 =317 [0
“[A-al]lX; =0—[A—- (- 3)1]X1—0ﬂ 2 4 —6] y]=[ol
-1

(Operating Rz g Rz - 2R1, R3 g R3 + Rl)

ylelds 1 2 _3][

yields yields
Choose y = 00— x—3z—0—>’3—‘=5

yields
— x+2y—3z=0




3

w Xy = O] is the first Eigen vector of A corresponding to Eigen value o = —3.
1
eld ld.
Choose z = 0255 x + 2y—032>12=%
-2
~ X, =| 1 | isanother Eigen vector of A corresponding to Eigen value o = —3.
0

Let X5 = [y]be the Eigen vector of A corresponding to Eigen value ¢ = 5.

-3 0
v [A—allX;3=0 yielas [A-(B)IX;=0 yielas [ —4 _6] [y] = [0]
-2 -5 0

yields
— —=7x+2y—-3z=0,2x—4y—6z2=0,—x—2y—-5z=0

A . . x _ y _ z yields _y _Zyieldsx_y_Z
. from first two equationswe get , v——==="===5— ryiabwrie i et
-4 -6 -6 2 2 -4
1
~ X5 =| 2 | isthe Eigen vector of A corresponding to Eigen value @ = 5.
-1

-2 3 1
«~ Modal MatrixP=|1 0 2

0o 1 -1
-2 3 1
1 0 2 |=8=0.Hence vectors are linearly independent and the given matrix is
0o 1 -1

Diagonalizable.

Diagonal Matrix =D = P714P =

. _Adjp 1|72 4 6
P =W=_ 1 2 5
1 2 -3

%‘ZE_J[ I

—24 2 3 - 0 0
0 —24 2 = 0 -3 0
0 40 -1 0 0 5

17. Let T be a linear transformation defined b LIy 2 ) 0 1yl
) y T[(1 1)] ={2] T[( )]_
3

|

(2] 710 9=(=2) 716 1= (2 ) em el 2

Sol.The matrices G D ((1) D ((1) (1)) (8 (1)) are linearly independent and hence form a

basis in the space of 2 x 2 matrices. We write for any scalars a4, a,, a3, @,, notall zero
4 5\_ (0 1 0 1 0 0 0 0\ _ a; a ta;
(3 8) _“1(1 1)+“2(1 1)+“3(1 1)+“4(o 1)‘ a, + ay + a; a1+a2+a3+a4]
Comparing the elements and solving the resulting system of equations, we get

a,=4a,= 1,a; =-2, a, =5.Since T is a linear transformation,
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