Types of Matrices and Diagonalization of Matrices

Symmetric matrix: A square matrix is called symmetric matrix if $A = A^T$

i.e.
$$a_{ij} = a_{ji}$$

e.g.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 7 \end{bmatrix}$$

Skew-Symmetric matrix: A square matrix is called symmetric matrix if $A=-A^T$

i.e. $a_{ij}=-a_{ji}$. The diagonal elements of a skew-symmetric matrix are zero because $a_{ii}=-a_{ii}$ if and only if $a_{ii}=0$

e.g.
$$\begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 6 \\ -3 & -6 & 0 \end{bmatrix}$$

Orthogonal matrix: A square matrix A is said to be orthogonal if

$$AA^T = A^TA = I.$$

e.g.
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Unitary matrix: A square matrix A is said to be Unitary if

$$A^{\theta}A = AA^{\theta} = I$$

where
$$A^{\theta} = (\overline{A})^T$$

e.g.
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Note: Every orthogonal matrix is unitary.

Hermitian matrix: A square matrix A is said to be Hermitian matrix if

$$A^{\theta} = A$$
 i.e. $a_{ij} = \overline{a_{ji}}$

Diagonal elements of a Hermitian matrix are real numbers.

e.g.
$$A = \begin{bmatrix} 1 & 2+3i & 5-6i \\ 2-3i & 2 & 9-6i \\ 5+6i & 9+6i & -11 \end{bmatrix}$$

Skew Hermitian matrix: A square matrix A is said to be skew Hermitian matrix if

$$A^{\theta} = -A$$
 i.e. $a_{ij} = -\overline{a_{ji}}$

Diagonal elements of a skew Hermitian matrix are either zero or purely imaginary numbers.

e.g.
$$A = \begin{bmatrix} 1 & 2+3i & -5-6i \\ -2+3i & 2 & -9+6i \\ 5-6i & 9+6i & -11 \end{bmatrix}$$

Similar matrices: A square matrix A is said to be similar to a square matrix B if there exists an invertible matrix P such that $A = P^{-1}BP$. P is called similarity matrix. This relation of similarity is a symmetric relation.

Cayley Hamilton theorem: Every square matrix satisfies its own characteristic equation.

Eigen values and Eigen Vectors: Let A be a square matrix. Then the equation determinant $(A - \alpha I)$ =0 is called characteristic equation of A. The roots of characteristic equation of A are called Eigen values or latent roots of matrix A.

A column vector X satisfying the equation $AX = \alpha X$ i.e. $(A - \alpha I)X = 0$ is called Eigen vector or latent vector of matrix A corresponding to eigen value α .

Diagonalizable matrix: A square matrix A is said to be diagonalizable if there exists an invertible matrix P such that

$$P^{-1}BP = D$$

Where D is a diagonal matrix and the diagonal elements of D are Eigen values of A.

1. The characteristics equation of a matrix A is $t^2-t-1=0$, then determine A^{-1} .

Sol. By Cayley Hamilton theorem, every square matrix satisfies its characteristic equation.

Therefore A²-A-1=0

or
$$A^2 - A = 1$$

Premultipying both sides by A

$$A-I=A^{-1}$$

2. Prove eigen value of a Hermitian matrix is real.

Let α be eigen value of A and X be the corresponding non-zero eigen vector. Then

$$AX = \alpha X \xrightarrow{yields} (AX)^{\theta} = (\alpha X)^{\theta} \xrightarrow{yields} X^{\theta} A^{\theta} = \bar{\alpha} X^{\theta} \xrightarrow{yields} X^{\theta} A = \bar{\alpha} X^{\theta} \quad (using (1))$$

Post multiplying both sides by X, we get

$$X^{\theta}(AX) = \bar{\alpha}(X^{\theta}X) \xrightarrow{\text{yields}} X^{\theta} \ \alpha X = \bar{\alpha}(X^{\theta}X) \xrightarrow{\text{yields}} \alpha(X^{\theta}X) = \bar{\alpha}(X^{\theta}X) \xrightarrow{\text{yields}} \alpha = \bar{\alpha}$$

Hence α is a real number. Therefore Eigen value of a Hermitian matrix is real.

3. Prove $\frac{|A|}{\alpha}$ is an eigen value of adj (A) eigen vector remaining the same if α is an eigen value of A and X is corresponding Eigen vector.

Sol. Let A be a square matrix ----(1)

Let α be eigen value of A and X be the corresponding non-zero eigen vector. Then

$$AX = \alpha X$$
 (using (1))

Pre-multiplying both sides by adj (A), we get

$$adj (A)(AX) = adj (A)\alpha X \xrightarrow{yields} (adj (A)A)X = \alpha (adj (A)X) \xrightarrow{yields} |A|X = \alpha (adj (A)X)$$
$$adj (A)X = \frac{|A|}{\alpha}X$$

Hence $\frac{|A|}{\alpha}$ is an eigen value of adj (A) and X is corresponding Eigen vector.

4. Prove that product of two orthogonal matrices is orthogonal matrix

Sol. Let A and B be two orthogonal matrices. Therefore

$$AA^T = A^TA = I$$
 and $BB^T = B^TB = I$

Now
$$(AB)(AB)^T = ABB^TA^T = AIA^T = AA^T = I$$
 and

$$(AB)^T(AB) = B^TA^TAB = BIB^T = BB^T = I$$

Hence AB is an orthogonal matrix. Therefore product of two orthogonal matrices is orthogonal matrix.

5. Prove that transpose of an orthogonal matrix is orthogonal matrix.

Sol. Let A be orthogonal matrix. Therefore

$$AA^T = A^TA = I$$

Now
$$A^T(A^T)^T = A^T A = I$$
 and

$$(A^T)^T A^T = AA^T = I$$

Hence A^T is an orthogonal matrix

Therefore transpose of an orthogonal matrix is orthogonal matrix.

- 6. Prove that inverse of an orthogonal matrix is an orthogonal matrix.
- Sol. Let A be orthogonal matrix. Therefore

$$AA^T = A^TA = I$$

Now
$$A^{-1}(A^{-1})^T = A^{-1}(A^T)^{-1} = (A^T A)^{-1} = I^{-1} = I$$
 and

$$(A^{-1})^T A^{-1} = (A^T)^{-1} A^{-1} = (AA^T)^{-1} = I^{-1} = I$$

Therefore inverse of an orthogonal matrix is orthogonal matrix.

7. Prove that determinant of an orthogonal matrix is ± 1 .

Sol. Let A be orthogonal matrix. Therefore

$$AA^T = A^TA = I$$

Taking determinant on both sides

$$|AA^{T}| = |I| \xrightarrow{yields} |A||A^{T}| = 1 \xrightarrow{yields} |A||A| = 1 \xrightarrow{yields} |A|^{2} = 1 \xrightarrow{yields} |A| = \pm 1$$
(Because $|CD| = |C||D|$, $|I| = 1$, $|A| = |A^{T}|$)

8. Prove that inverse of a unitary matrix is an unitary matrix.

Sol. Let A be unitary matrix. Therefore

$$A^{\theta}A = AA^{\theta} = I$$
 where $A^{\theta} = (\overline{A})^{T}$
Now $A^{-1}(A^{-1})^{\theta} = A^{-1}(A^{\theta})^{-1} = (A^{\theta}A)^{-1} = I^{-1} = I$ and $(A^{-1})^{\theta}A^{-1} = (A^{\theta})^{-1}A^{-1} = (AA^{\theta})^{-1} = I^{-1} = I$

Hence A^{-1} is an orthogonal matrix

Therefore inverse of an orthogonal matrix is orthogonal matrix.

9. State and prove Cayley Hamilton theorem.

Sol. Statement: Every square matrix satisfies its own characteristic equation.

Proof: Let A be a square matrix of order n and its characteristic equation be $|A - \lambda I| = 0$ i.e. $(-1)^n \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \cdots + a_n = 0$

Required to be proved:
$$(-1)^n A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I = 0$$

Here λ is an eigen value of A.

 $[A - \lambda I]$ is a matrix of order n $\xrightarrow{\text{yields}} adj. (A - \lambda I)$ is a matrix of order (n-1).

Therefore we can write $adj.(A - \lambda I) = P_1 \lambda^{n-1} + P_2 \lambda^{n-2} + \cdots + P_n$ where

 $P_1, P_2, \dots P_n$ are square matrices.

Also
$$A(adj.A) = |A|I \xrightarrow{yields} (A - \lambda I)adj.(A - \lambda I) = |A - \lambda I|I$$

$$\xrightarrow{\text{yields}} (A - \lambda I)[P_1 \lambda^{n-1} + P_2 \lambda^{n-2} + \dots + P_n] = [(-1)^n \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_n]I$$

Comparing coefficients of like powers of A, we get

 $AP_n = a_n I$

Pre-multiplying these equations by A^n , A^{n-1} , A^{n-2} , , A, I respectively on both sides and

adding, we get
$$0 = (-1)^n A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I$$

$$\xrightarrow{yields} (-1)^n A^n + a_1 A^{n-1} + a_2 A^{n-2} + \cdots + a_n I = 0$$

(Hence proved).

10. Find characteristic equation of $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$

Sol.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

Characteristic equation of A is
$$|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} 1 - \alpha & 0 & -1 \\ 1 & 2 - \alpha & 1 \\ 2 & 2 & 3 - \alpha \end{vmatrix} = 0$$

$$\xrightarrow{yields} \alpha^3 - 6\alpha^2 + 11\alpha - 6 = 0$$

11. Is
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 diagonalizable?

Sol.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

Characteristic equation of A is
$$|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} 1 - \alpha & 0 & 0 \\ 0 & 3 - \alpha & -1 \\ 0 & -1 & 3 - \alpha \end{vmatrix} = 0$$

$$\xrightarrow{\text{yields}} \alpha^3 - 7\alpha^2 + 14\alpha - 8 = 0 \xrightarrow{\text{yields}} \alpha = 1,2,4$$

Since A has three distinct Eigen values, ∴ it has three linearly independent Eigen vectors. Hence A A is diagonalizable.

12. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$. Hence find A^{-1} . Also find Eigen values and vectors of A

Sol.
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

Characteristic equation of A is $|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} 1 - \alpha & 4 \\ 3 & 2 - \alpha \end{vmatrix} = 0$

$$\xrightarrow{yields} \alpha^2 - 3\alpha - 10 = 0 \xrightarrow{yields} \alpha = -2,5$$

By Cayley Hamilton theorem $A^2 - 3A - 10I = 0$ (*)

Now
$$A^2 = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 13 & 12 \\ 9 & 16 \end{bmatrix}$$
,

$$\therefore A^2 - 3A - 10I = \begin{bmatrix} 13 & 12 \\ 9 & 16 \end{bmatrix} + \begin{bmatrix} -3 & -12 \\ -9 & -6 \end{bmatrix} + \begin{bmatrix} -10 & 0 \\ 0 & -10 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

: Cayley Hamilton theorem is verified for given matrix A.

Multiplying both sides of (*) by
$$A^{-1}$$
, we get $A - 3I = 10A^{-1} \xrightarrow{yields} A^{-1} = \frac{1}{10} \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix}$

Let $X_1 = \begin{bmatrix} x \\ y \end{bmatrix}$ be the Eigen vector of A corresponding to Eigen value $\alpha = -2$.

$$\therefore [A - \alpha I]X_1 = 0 \xrightarrow{yields} [A - (-2)I]X_1 = 0 \xrightarrow{yields} \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{yields} 3x + 4y = 0$$
, $3x + 4y = 0 \xrightarrow{yields} \frac{x}{-4} = \frac{y}{3}$

 $\therefore X_1 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ is the Eigen vector of A corresponding to Eigen value $\alpha = -2$.

Let $X_2 = \begin{bmatrix} x \\ y \end{bmatrix}$ be the Eigen vector of A corresponding to Eigen value $\alpha = 5$.

$$\therefore [A - \alpha I]X_2 = 0 \xrightarrow{yields} [A - (5)I]X_2 = 0 \xrightarrow{yields} \begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{\text{yields}} -4x + 4y = 0$$
, $3x - 3y = 0 \xrightarrow{\text{yields}} x = y \xrightarrow{\text{yields}} \frac{x}{1} = \frac{y}{1}$

 $\therefore X_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is the Eigen vector of A corresponding to Eigen value $\alpha = 5$.

13. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Hence find A^{-1} .

Sol.
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Characteristic equation of A is
$$|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} 2 - \alpha & -1 & 1 \\ -1 & 2 - \alpha & -1 \\ 1 & -1 & 2 - \alpha \end{vmatrix} = 0$$

$$\xrightarrow{yields} \alpha^3 - 6\alpha^2 + 9\alpha - 4 = 0$$

By Cayley Hamilton theorem $A^3 - 6A^2 + 9A - 4I = 0$ (i)

L.H.S.
$$A^2 = A$$
. $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$
$$A^3 = AAA = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$$

Hence $A^3 - 6A^2 + 9A - 4I$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} + 9 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 22 - 36 + 18 - 4 & -21 + 30 - 9 & 21 - 30 + 9 \\ -21 + 30 - 9 & 22 - 36 + 18 - 4 & -21 + 30 - 9 \\ 21 - 30 + 9 & -21 + 30 - 9 & 22 - 36 + 18 - 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence Cayley Hamilton theorem is verified for the given matrix A

From(i),
$$4I = A^3 - 6A^2 + 9A$$

Multiplying both sides by A^{-1} , we get

$$A^{-1} = \frac{1}{4} \begin{bmatrix} A^2 - 6A + 9I \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} - 6 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

14. Find Eigen values and vectors of
$$A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

Sol.
$$A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

Characteristic equation of A is
$$|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} 3 - \alpha & 1 & -1 \\ -2 & 1 - \alpha & 2 \\ 0 & 1 & 2 - \alpha \end{vmatrix} = 0$$

$$\xrightarrow{\text{yields}} \alpha^3 - 6\alpha^2 + 11\alpha - 6 = 0 \xrightarrow{\text{yields}} \alpha = 1,2,3$$
 are Eigen values of given matrix.

Let
$$X_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be the Eigen vector of A corresponding to Eigen value $\alpha = 1$.

$$\therefore [A - \alpha I]X_1 = 0 \xrightarrow{yields} [A - (1)I]X_1 = 0 \xrightarrow{yields} \begin{bmatrix} 2 & 1 & -1 \\ -2 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{\text{yields}} 2x + y - z = 0, -2x + 2z = 0, y + z = 0$$

From first two equations,
$$\frac{x}{1 - 1} = \frac{y}{-1 - 2} = \frac{z}{2 - 1} \xrightarrow{yields} \frac{x}{2} = \frac{y}{-2} = \frac{z}{2} \xrightarrow{yields} \frac{x}{1} = \frac{y}{-1} = \frac{z}{1}$$

$$\therefore X_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \text{ is the Eigen vector of A corresponding to Eigen value } \alpha = 1.$$

Let
$$X_2 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be the Eigen vector of A corresponding to Eigen value $\alpha = 2$.

$$\therefore [A - \alpha I] X_2 = 0 \xrightarrow{yields} [A - (2)I] X_2 = 0 \xrightarrow{yields} \begin{bmatrix} 1 & 1 & -1 \\ -2 & -1 & 2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{\text{yields}} x + y - z = 0$$
, $-2x - y + 2z = 0$, $y = 0$

From first two equations,
$$\frac{x}{1 - 1} = \frac{y}{-1 - 1} = \frac{z}{1 - 1} \xrightarrow{yields} \frac{x}{1} = \frac{y}{0} = \frac{z}{1}$$

$$\therefore X_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 is the Eigen vector of A corresponding to Eigen value $\alpha = 2$.

Let
$$X_3 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be the Eigen vector of A corresponding to Eigen value $\alpha = 3$.

$$\therefore [A - \alpha I]X_3 = 0 \xrightarrow{yields} [A - (3)I]X_3 = 0 \xrightarrow{yields} \begin{bmatrix} 0 & 1 & -1 \\ -2 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{yields} y-z=0 \text{ , } -2x-2y+2z=0, y-z=0 \xrightarrow{yields} y-z=0 \text{ , } -2x-2y+2z=0$$

: we get,
$$\frac{x}{\frac{1}{1} - 1} = \frac{y}{-1} = \frac{z}{0} = \frac{z}{0} = \frac{yields}{0} = \frac{y}{0} = \frac{z}{0} = \frac{z}{0}$$

$$\therefore X_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 is the Eigen vector of A corresponding to Eigen value $\alpha = 2$.

15. Find Eigen values and vectors of
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Sol.
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Characteristic equation of A is
$$|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} 1 - \alpha & 1 & 0 \\ 0 & 1 - \alpha & 1 \\ 0 & 0 & 1 - \alpha \end{vmatrix} = 0$$

$$\xrightarrow{\text{yields}} (1 - \alpha)^3 \xrightarrow{\text{yields}} \alpha = 1,1,1$$
 are Eigen values of given matrix.

Let
$$X_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be the Eigen vector of A corresponding to Eigen value $\alpha = 1$.

$$\therefore \ [A-\alpha I]X_1=0 \xrightarrow{yields} [A-(1)I]X_1=0 \xrightarrow{yields} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{yields} y = 0$$
, $z = 0$. Take $x = 1$

$$\therefore X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 is the Eigen vector of A corresponding to Eigen value $\alpha = 1$.

16. Examine whether the following matrix is diagonalizable. If so, obtain the matrix P such that $P^{-1}AP$ is a diagonal matrix. $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$

Sol.
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Characteristic equation of A is
$$|A - \alpha I| = 0 \xrightarrow{yields} \begin{vmatrix} -2 - \alpha & 2 & -3 \\ 2 & 1 - \alpha & -6 \\ -1 & -2 & 0 - \alpha \end{vmatrix} = 0$$

$$\xrightarrow{yields} -(\alpha+3)(\alpha+3)(\alpha-5) = 0 \xrightarrow{yields} \alpha = -3, -3, 5 \text{ are Eigen values of given matrix.}$$

Let $X_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be the Eigen vector of A corresponding to Eigen value $\alpha = -3$.

$$\therefore [A - \alpha I] X_1 = 0 \xrightarrow{yields} [A - (-3)I] X_1 = 0 \xrightarrow{yields} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(Operating $R_2 \rightarrow R_2 - 2R_1$, $R_3 \rightarrow R_3 + R_1$)

$$\xrightarrow{yields} \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{yields} x + 2y - 3z = 0$$

Choose
$$y = 0 \xrightarrow{yields} x - 3z = 0 \xrightarrow{yields} \frac{x}{3} = \frac{z}{1}$$

$$\therefore X_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$
 is the first Eigen vector of A corresponding to Eigen value $\alpha = -3$.

Choose
$$z = 0 \xrightarrow{yields} x + 2y = 0 \xrightarrow{yields} \frac{x}{-2} = \frac{y}{1}$$

$$\therefore X_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$
 is another Eigen vector of A corresponding to Eigen value $\alpha = -3$.

Let
$$X_3 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be the Eigen vector of A corresponding to Eigen value $\alpha = 5$.

$$\therefore [A - \alpha I]X_3 = 0 \xrightarrow{yields} [A - (5)I]X_3 = 0 \xrightarrow{yields} \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{yields}$$
 $-7x + 2y - 3z = 0$, $2x - 4y - 6z = 0$, $-x - 2y - 5z = 0$

$$\therefore \text{ from first two equations we get }, \quad \frac{x}{2} = \frac{y}{-3} = \frac{z}{-7} = \frac{z}{2} \xrightarrow{yields} \frac{x}{-24} = \frac{y}{-48} = \frac{z}{24} \xrightarrow{yields} \frac{x}{1} = \frac{y}{12} = \frac{z}{-1}$$

$$\therefore X_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 is the Eigen vector of A corresponding to Eigen value $\alpha = 5$.

$$\therefore \text{Modal Matrix P} = \begin{bmatrix} -2 & 3 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$

$$|P| = \begin{vmatrix} -2 & 3 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{vmatrix} = 8 \neq 0$$
. Hence vectors are linearly independent and the given matrix is

Diagonalizable.

$$P^{-1} = \frac{Adj.P}{|P|} = \frac{1}{8} \begin{bmatrix} -2 & 4 & 6\\ 1 & 2 & 5\\ 1 & 2 & -3 \end{bmatrix}$$

Diagonal Matrix = D =
$$P^{-1}AP = \frac{1}{8}\begin{bmatrix} -2 & 4 & 6 \\ 1 & 2 & 5 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix} \begin{bmatrix} -2 & 3 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$

$$=\frac{1}{8}\begin{bmatrix} -24 & 0 & 0\\ 0 & -24 & 0\\ 0 & 0 & 40 \end{bmatrix} \begin{bmatrix} -2 & 3 & 1\\ 1 & 0 & 2\\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0\\ 0 & -3 & 0\\ 0 & 0 & 5 \end{bmatrix}$$

17. Let T be a linear transformation defined by
$$T\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $T\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 & 1 \end{bmatrix}$

$$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad T\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \ , \quad T\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}. \text{ Find } T\begin{bmatrix} \begin{pmatrix} 4 & 5 \\ 3 & 8 \end{pmatrix} \end{bmatrix}.$$

Sol. The matrices $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are linearly independent and hence form a

basis in the space of 2×2 matrices. We write for any scalars $\alpha_1, \alpha_2, \alpha_3, \alpha_4$, not all zero

$$\begin{pmatrix} 4 & 5 \\ 3 & 8 \end{pmatrix} = \alpha_1 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + \alpha_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} \alpha_1 & \alpha_1 + \alpha_2 \\ \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \end{bmatrix}$$

Comparing the elements and solving the resulting system of equations, we get

$$\alpha_1 = 4, \alpha_2 = 1, \alpha_3 = -2, \ \alpha_4 = 5$$
. Since T is a linear transformation,